精英家教网 > 高中数学 > 题目详情
已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于(  )
A、3
B、4
C、3
2
D、4
2
分析:先设出直线AB的方程,与抛物线方程联立消去y,根据韦达定理求得x1+x2的值,进而可求AB中M的坐标,代入直线x+y=0中求得b,进而由弦长公式求得|AB|.
解答:解:设直线AB的方程为y=x+b,由
y=-x2+3
y=x+b
?x2+x+b-3=0?x1+x2=-1,
进而可求出AB的中点M(-
1
2
,-
1
2
+b)

又∵M(-
1
2
,-
1
2
+b)
在直线x+y=0上,
代入可得,b=1,
∴x2+x-2=0,
由弦长公式可求出|AB|=
1+12
12-4×(-2)
=3
2

故选C.
点评:本题考查直线与圆锥曲线的位置关系.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=-x2+ax+
12
与直线y=2x
(1)求证:抛物线与直线相交;
(2)求当抛物线的顶点在直线的下方时,a的取值范围;
(3)当a在(2)的取值范围内时,求抛物线截直线所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+bx+c在其上一点(1,2)处的切线与直线y=x-2平行,则b、c的值分别为
-1、2
-1、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2上有一定点A(-1,1)和两动点P、Q,当PA⊥PQ时,点Q的横坐标取值范围是(  )
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步练习册答案