精英家教网 > 高中数学 > 题目详情
已知abc是同一平面内的三个向量,其中a=(1,2).

(1)若|c|=,且ca,求c的坐标;

(2)若|b|=,且a+2b与2a-b垂直,求ab的夹角θ.

解:(1)设c=(x,y),∵|c|=,∴,即x2+y2=20,      ①

ca,a=(1,2),∴2x-y=0,即y=2x.                                ②

联立①②得

c=(2,4)或(-2,-4).

(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0,

即2a2+3a·b-2b2=0.

∴2|a|2+3a·b-2|b|2=0.                          ①

∵|a|2=5,|b|2=,代入①式得a·b=.

∴cosθ==-1.

又∵θ∈[0,π],∴θ=π.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,2)
(1)若|
c
|=2
5
,且
c
a
,求
c
的坐标;
(2)若|
b
|=
5
2
,且2
a
+
b
a
-3
b
垂直,求
a
b
的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,-2).
(1)若|
c
|=2
5
,且
c
a
,求向量
c
的坐标;
(2)若|
b
|=
2
,且
a
+
b
a
-2
b
垂直,求
a
b
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1, 2)

(Ⅰ)若|
b
|=3
5
,且
b
a
,求
b
的坐标;
(Ⅱ)若
c
a
的夹角θ的余弦值为-
5
10
,且(
a
+
c
)⊥(
a
-9
c
)
,求|
c
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是同一平面上不共线的三点,且
AB
AC
=
BA
BC

(1)求证:∠CAB=∠CBA;
(2)若
AB
AC
=2
,求A,B两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个单位向量,它们两两之间的夹角均为120°,且|k
a
+
b
+
c
|>1,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案