精英家教网 > 高中数学 > 题目详情
15.已知方程|3x-1|=k.
(1)画出函数y=|3x-1|的图象并求它的单调区间;
(2)讨论方程解的个数.

分析 (1)画出图象,由图象可得,
(2)结合图象,分类讨论即可.

解答 解:(1)y=|3x-1|的图象如图所示,
由图象可知,函数在(-∞,0)上单调递减,在[0,+∞)上单调递增,
(2)由图象可知,当k<0时,方程无解,
当k=0,或k≥1时方程有唯一的解,
当0<k<1时,方程有2个解.

点评 本题考查了绝对值函数的图象和画法和识别,以及方程的解的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(2b-c,a)和向量$\overrightarrow{n}$=(cosC,cosA)为共线向量.
(1)求角A的大小;
(2)若BC=6,求BC边上的高h的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个车辆制造厂引进了一条汽车整车装配流水线,这条流水线生产的汽车月销量Q(辆)与单价x(万元)之间有如下关系:Q(x)=220-2x.设这条流水线生产的汽车的月产值为y(万元).
(1)写出函数y=f(x)的解析式,并求汽车的单价为多少时,月产值最大;
(2)若这家工厂希望这条流水线的月产值不低于6000万元,那么汽车的单价应如何确定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称ABCDE
销售额x(千万元)35679
利润额y(百万元)23345
(1)用最小二乘法计算利润额y对销售额x的回归直线方程;
(2)当销售额为8(千万元)时,估计利润额的大小.
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=logax(a>0,a≠1)的图象过点(8,3),则其反函数为y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一几何体按比例绘制的三视图如图所示(单位:m).求它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点
B.若直线l与平面α平行,则l与平面α内的任意一条直线都平行
C.若直线l上有无数个点不在平面α内,则l∥α
D.如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2$\frac{2+x}{2-x}$.
(1)判断f(x)的奇偶性;
(2)利用函数单调性的定义证明f(x)为定义域上的单调增函数;
(2)解关于x的不等式f(x2-2)+f(-x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),且当x>1时,f(x)<0,f(2)=-1.
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是减函数;
(3)解不等式f(x2-1)<2.

查看答案和解析>>

同步练习册答案