精英家教网 > 高中数学 > 题目详情

已知中心为O的正方形ABCD的边长为2,点M,N分别为线段BC,CD上的两个不同点,且||=1,则的取值范围是              

解析试题分析:设M(2,b),N(a,2).由,可得,即(a﹣2)2+(b﹣2)2=1.且1≤a≤2,1≤b≤2.如图所示,建立平面直角坐标系.
=(1,b﹣1)•(a﹣1,1)=a+b﹣2.作出可行域,即可得出答案.
如图所示,建立平面直角坐标系.
设M(2,b),N(a,2).∵,∴,即(a﹣2)2+(b﹣2)2=1.且1≤a≤2,1≤b≤2.
又O(1,1),∴=(1,b﹣1)•(a﹣1,1)=a+b﹣2.
令a+b﹣2=t,则目标函数b=﹣a+2+t,
作出可行域,如图2,其可行域是圆弧.
①当目标函数与圆弧相切与点P时,,解得t=2﹣取得最小值;
②当目标函数经过点EF时,t=2+1﹣2=1取得最大值.
.即为的取值范围.
故答案为


考点:平面向量数量积的运算
点评:本题综合考查了向量的模的计算公式、线性规划等基础知识,及数形结合思想方法.熟练掌握是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若实数x,y满足不等式组,则的最大值是               

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知变量满足约束条件,则的最小值为      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若变量x、y满足,若的最大值为
       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知满足约束条件,则目标函数的最大值是             

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

为坐标原点,点坐标为,若满足不等式组:,则的最大值为      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

实数满足条件,则函数的最大值为         

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

,且当时,恒有,则以,b为坐标点P(,b)所形成的平面区域的面积等于_______

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知,则的范围是      的范围是      

查看答案和解析>>

同步练习册答案