分析 (Ⅰ)证明:EB⊥平面FBD,即可证明EB⊥FD;
(Ⅱ)在平面FCH内过C作CK⊥FH,则CK⊥平面FED.即可求点B到平面FED的距离.
解答 (Ⅰ)证明:∵FC⊥平面BED,BE?平面BED,∴EB⊥FC.
又点E为$\widehat{AC}$的中点,B为直径AC的中点,∴EB⊥BC.
又∵FC∩BC=C,∴EB⊥平面FBD.
∵FD?平面FBD,∴EB⊥FD.
(Ⅱ)解:如图,在平面BEC内过C作CH⊥ED,连接FH.![]()
则由FC⊥平面BED知,ED⊥平面FCH.
∵Rt△DHC∽Rt△DBE,∴$\frac{DC}{DE}$=$\frac{CH}{BE}$.
在Rt△DBE中,DE=$\sqrt{B{E}^{2}+B{D}^{2}}$=$\sqrt{5}$,
∴CH=$\frac{DC•BE}{DE}$=$\frac{\sqrt{5}}{5}$.
在平面FCH内过C作CK⊥FH,则CK⊥平面FED.
∵FC=2.∴FH2=FC2+CH2=$\frac{21}{5}$,∴FH=$\frac{\sqrt{105}}{5}$.
∴CK=$\frac{FC•CH}{FH}$=$\frac{2\sqrt{21}}{21}$.
∵C是BD的中点,∴B到平面FED的距离为2CK=$\frac{4\sqrt{21}}{21}$.
点评 本题考查线面平行的判定与性质,考查点到平面距离的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e2e+3f(e)<e2ππ3f(π) | B. | e2e+3f(π)>e2ππ3f(e) | C. | e2e+3f(π)<e2ππ3f(e) | D. | e2e+3f(e)>e2ππ3f(π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | -1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [$\frac{1}{2}$,2] | C. | [$\frac{1}{2}$,1] | D. | (-∞,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com