精英家教网 > 高中数学 > 题目详情
12.函数f(x)的定义域为R+,且对于任何正实数x、y都有f(xy)=f(x)+f(y),若f(8)=6,则f($\sqrt{2}$)=(  )
A.1B.2C.-1D.$\sqrt{2}$

分析 利用赋值法,有f(8)=f(4)+f(2),f(2)=f(2)+f(2),f(2)=f($\sqrt{2}$)+f($\sqrt{2}$),可求得f($\sqrt{2}$)

解答 解:∵对于任何正实数x、y都有f(xy)=f(x)+f(y),∴f(8)=f(4)+f(2),f(4)=f(2)+f(2),∴f(2)=2,
∵f(2)=f($\sqrt{2}$)+f($\sqrt{2}$),∴f($\sqrt{2}$)=1
故选:A.

点评 本题考查了抽象函数的赋值法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,sinC=$\frac{1}{2}$,则此三角形的面积是(  )
A.8B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.运行下面的程序中,若输入x的值为5,则输出的y的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,以AC=2为直径的⊙B,点E为$\widehat{AC}$的中点,点D在直径AC延长线上,CD=1,FC⊥平面BED,FC=2.
(Ⅰ)证明:EB⊥FD;
(Ⅱ)求点B到平面FED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.周长为9,圆心角为1rad的扇形面积为(  )
A.$\frac{9}{2}$B.$\frac{9}{4}$C.πD.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,an>0,且a1+a2+…+a10=30,则a5+a6的值(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的序号是(  )
A.②、③B.③、④C.①、④D.①、②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且BE⊥PD.
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图.在矩形ABCD中.AB=3 $\sqrt{3}$,BC=3,沿对角线BD把△BCD折起.使C移到C′.且C′在面ABC内的射影O恰好落在AB上.
(1)求证:AD⊥BC′;
(2)求证:平面DBC′⊥平面ADC′;
(3)求三棱锥C′-ABD的体积.

查看答案和解析>>

同步练习册答案