精英家教网 > 高中数学 > 题目详情
已知向量
a
b
c
满足
a
+
b
+
c
=0,且
a
c
的夹角为60°,|b|=
3
|a|
,则tan<
a
b
≥(  )
分析:
a
+
b
+
c
=0,|
b
|= 
3
|
a
|
可得
b
2
=
a
2
+
c
2
+2
a
c
,从而可得|
a
|=|
c
|
,代入
a
b
=
a
•(-
a
-
c
)可求,进而可求cos
a
b
 >
=
a
b
|
a
||
b
|
.可求
解答:解:∵
a
+
b
+
c
=0,|
b
|= 
3
|
a
|

b
=-
a
-
c

b
2
=
a
2
+
c
2
+2
a
c
=
a
2
 + 
c
2
 +2|
a
||
c
|cos60°
=3
a
2

|
a
|=|
c
|

a
b
=
a
•(-
a
-
c
)=-
a
2
-
a
c
=-|
a
|
2
-|
a
|•|
a
|•cos60°=-
3
2
|
a
|
2

∴cos
a
b
 >
=
a
b
|
a
||
b
|
=
-
3
2
a
2
3
|
a
||
a
|
=-
3
2

0≤<
a
b
>≤π

a
b
>=
6

tan<
a
b
 >=-
3
3

故选 C.
点评:本题考查两个向量的数量积的定义及向量的数量积的性质的应用,向量的夹角公式的应用,属于向量知识的简单应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
α
=(
3
sinωx,cosωx),
β
=(cosωx,cosωx)
,记函数f(x)=
α
β
,已知f(x)的周期为π.
(1)求正数ω之值;
(2)当x表示△ABC的内角B的度数,且△ABC三内角A、B、C满sin2B=sinA•sinC,试求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:湖南省月考题 题型:解答题

已知向量sinωx,cosωx),,记函数f(x)=,已知f(x)的周期为π.
(1)求正数ω之值;
(2)当x表示△ABC的内角B的度数,且△ABC三内角A、B、C满sin2B=sinAsinC,试求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省邵阳市洞口四中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知向量sinωx,cosωx),,记函数f(x)=,已知f(x)的周期为π.
(1)求正数ω之值;
(2)当x表示△ABC的内角B的度数,且△ABC三内角A、B、C满sin2B=sinA•sinC,试求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江西省宜春市宜丰中学高二第九次模拟数学试卷(理科)(解析版) 题型:解答题

已知向量sinωx,cosωx),,记函数f(x)=,已知f(x)的周期为π.
(1)求正数ω之值;
(2)当x表示△ABC的内角B的度数,且△ABC三内角A、B、C满sin2B=sinA•sinC,试求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量, ,记函数已知的周期为π.

(1)求正数之值;

(2)当x表示△ABC的内角B的度数,且△ABC三内角ABC满sin,试求f(x)的值域.

查看答案和解析>>

同步练习册答案