精英家教网 > 高中数学 > 题目详情
椭圆的离心率是,则双曲线的渐近线方程是(  )
A.B.C.D.
A

试题分析:根据题意,由于椭圆的离心率是那么可知 ,那么可知双曲线的渐近线方程 ,故选A.
点评:解决的关键是根据相同的ab在不同的方程中关系式来推导,属于基础题,也是易错点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的一个焦点到一条渐近线的距离为______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的一个焦点作垂直于实轴的弦 ,是另一焦点,若∠,则双曲线的离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程表示曲线,给出以下命题:
①曲线不可能为圆;
②若,则曲线为椭圆;
③若曲线为双曲线,则
④若曲线为焦点在轴上的椭圆,则.
其中真命题的序号是_____(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,F1,F2是双曲线C:(a>0,b>0) 的左、右焦点,过F1的直线与的左、右两支分别交于A,B两点.若 | AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双 曲线的离心率为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三角形AOB的顶点A,B在抛物线上,O为坐标原点,则(     )
A.B.C.D.

查看答案和解析>>

同步练习册答案