精英家教网 > 高中数学 > 题目详情
15.若正方形ABCD的一条边在直线y=2x-17上,另外两个顶点在抛物线y=x2上.则该正方形面积的最小值为80.

分析 设C,D在抛物线上,C(x1,x12),D(x2,x22).利用CD∥AB,可得kCD=kAB,再利用正方形ABCD可得|BC|=|CD|,即可解出,进而求出面积.

解答 解:不妨设C,D在抛物线上,C(x1,x12),D(x2,x22).不妨设x1<x2
∵CD∥AB,∴kCD=kAB,∴化为x1+x2=2.①
由正方形ABCD可得|BC|=|CD|,
∴$\frac{|2{x}_{1}-{{x}_{1}}^{2}-17|}{\sqrt{5}}$=$\sqrt{({x}_{1}-{x}_{2})^{2}+({{x}_{1}}^{2}-{{x}_{2}}^{2})^{2}}$,②
①②联立解得x1=3或9或-1或-7.
取3或9时,|BC|=4$\sqrt{5}$,∴正方形ABCD的面积S取得最小值80.
故答案为80.

点评 本题考查了正方形的性质、平行线之间的斜率关系、点到直线的距离公式等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知α:1≤x≤3,β:m+1≤x≤m+4,且α是β的充分条件,则实数m的取值范围为[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f(x)•x≥0的解集是(-3,-1]∪[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=2sin(2x-\frac{π}{3})+2$.
(1)求f(x)的对称中心.(2)当x∈[$\frac{π}{4}$,$\frac{π}{2}$]时f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图:在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点;
(1)证明:EF∥平面PAD;
(2)求三棱锥E-ABC的体积;
(3)求EC与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1和F2是两个定点,椭圆C1与等轴双曲线C2(实轴长等于虚轴长)都以F1、F2为焦点,点P是C1与C2的一个交点,且∠F1PF2=90°,则椭圆C1的离心率是$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}t\\ y=4+t\end{array}\right.$(t为参数),圆C的极坐标方程是ρ=4sinθ,则直线l被圆C截得的弦长为(  )
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不等式(a-1)x2+2(a-1)x-2<0,对于x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.代数式sin75°cos75°的值为(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{{\sqrt{3}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案