【题目】已知函数f(x)=x2﹣x﹣
(x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为( )
A.(﹣4
﹣5,+∞)
B.(4
﹣5,+∞)
C.(﹣4
﹣5,1)
D.(4
﹣5,1)
【答案】D
【解析】解:由题意知,方程f(﹣x)=g(x)在(0,+∞)上有两个不同的解,
即x2+x﹣
=x2+bx﹣2,
则b=
+1﹣
则b<1,
又b=
,
设h(x)=
,
则h′(x)=
=
,
由h′(x)=0得x2﹣2x﹣1=0得x=1+
或1﹣
(舍),
当0<x<1+
时,h′(x)<0,函数h(x)递减,
当x>1+
时,h′(x)>0,函数h(x)递增,
则当x=1+
时,h(x)取得极小值,
此时h(1+
)=
+1﹣
=2(
﹣1)+1﹣
=2
﹣2+1﹣
=2
﹣2+1﹣2(2﹣
)=4
﹣5,
∴要使则b=
+1﹣
在(0,+∞)上有两个不同的交点,
则4
﹣5<b<1,
即a的取值范围是(4
﹣5,1)
故选:D.![]()
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】2015男篮亚锦赛决赛阶段,中国男篮以
连胜的不败成绩赢得第
届亚锦赛冠军,同时拿到亚洲唯一
张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛
(最有价值球员),下表是易建联在这
场比赛中投篮的统计数据.
比分 | 易建联技术统计 | |||
投篮命中 | 罚球命中 | 全场得分 | 真实得分率 | |
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
中国 |
|
|
|
|
注:(1)表中
表示出手
次命中
次;
(2)
(真实得分率)是衡量球员进攻的效率,其计算公式为:
![]()
(1)从上述
场比赛中随机选择一场,求易建联在该场比赛中
超过
的概率;
(2)我们把比分分差不超过
分的比赛称为“胶着比赛”.为了考验求易建联在“胶着比赛”中的发挥情况,从“胶着比赛”中随机选择两场,求易建联在这两场比赛中
至少有一场超过
的概率;
(3)用
来表示易建联某场的得分,用
来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断
与
之间是否具有线性相关关系?结合实际简单说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
+
,则下列命题中正确命题的序号是 .
①f(x)是偶函数;
②f(x)的值域是[
,2];
③当x∈[0,
]时,f(x)单调递增;
④当且仅当x=2kπ±
(k∈Z)时,f(x)=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(Ⅰ) 求证:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一点Q,使得A,Q,M,D四点共面?若存在,指出点Q的位置并证明;若不存在,请说明理由;
(Ⅲ) 求点D到平面PAM的距离. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( ) ![]()
A.8+8
+4 ![]()
B.8+8
+2 ![]()
C.2+2
+ ![]()
D.
+
+ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且
,点C为圆O上一点,且
.点P在圆O所在平面上的正投影为点D,PD=BD. ![]()
(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
经过点
,倾斜角为
.在以原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)设直线
与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是正方形,每条侧棱的长都是底面边长的
倍,
为侧棱
上的点.
![]()
(1)求证:
.
(2)若
⊥平面
,求二面角
的大小.
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com