精英家教网 > 高中数学 > 题目详情

【题目】为得到函数y=cos(x+ )的图象,只需将函数y=sinx的图象(
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

【答案】C
【解析】解:∵y=cos(x+

=cos(﹣x﹣

=sin[ ﹣(﹣x﹣ )]

=sin(x+ ),

∴要得到y=sin(x+ )的图象,只需将函数y=sinx的图象向左平移 个长度单位,

故选C.

【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x的图象向左平移 个单位后得到函数g(x)的图象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的满足 ,则φ的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(
A.7
B.9
C.10
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+ax﹣ +1=0.
(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;
(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ,F1 , F2分别为左右焦点,在椭圆C上满足条件 的点A有且只有两个
(1)求椭圆C的方程
(2)若过点F2的两条相互垂直的直线l1与l2 , 直线l1与曲线y2=4x交于两点M、N,直线l2与椭圆C交于两点P、Q,求四边形PMQN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的连续函数f(x)满足f(1)=2,且f(x)在R上的导函数f′(x)<1,则不等式f(x)<x+1的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为菱形,E为棱PB的中点,O为AC与BD的交点,
(Ⅰ)证明:PD∥平面EAC
(Ⅱ)证明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

同步练习册答案