精英家教网 > 高中数学 > 题目详情
命题p:1-
1
a
>0 命题q:y=ax在定义域上是增函数,则p是q的(  )
分析:求出命题p,q的等价条件,利用充分条件和必要条件的定义进行判断.
解答:解:若1-
1
a
>0,则
a-1
a
>0
,即a(a-1)>0,解得a>1或a<0,即p:a>1或a<0.
若y=ax在定义域上是增函数,则a>1,即q:a>1.
∴p是q的必要不充分条件.
故选A.
点评:本题主要考查充分条件和必要条件的应用,先求出命题p,q的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:?a,b∈(0,+∞),当a+b=1时,
1
a
+
1
b
=3
;命题Q:?x∈R,x2-x+1≥0恒成立,则下列命题是假命题的是(  )
A、非P∨非QB、非P∧非Q
C、非P∨QD、非P∧Q

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有正确的序号是
(1)(4)
(1)(4)

(1)函数f(x)=ax-1+3(a>0且a≠1)的图象一定过定点P(1,4);
(2)函数f(x-1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
(3)已知f(x)=x5+ax3+bx-8,且f(-2)=8,则f(2)=-8;
(4)已知2a=3b=k(k≠1)且
1
a
+
2
b
=1,则实数k=18.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
②命题“若α>β,则tanα>tanβ”的逆命题为真命题;
③已知a>0,b>0,则由y=(a+b)(
1
a
+
4
b
)≥2
ab
•2
4
ab
ymin=8

④若命题“?x∈R,|x-a|+|x+1|≤2”是假命题,则命题“?x∈R,|x-a|+|x+1|>2”是真命题;
⑤设随机变量ξ~N(0,σ 2),且P(ξ<-1)=
1
4
,则P(0<ξ<1)=
1
4

其中正确的个数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-7x+10≤0,命题q:x2-2x+1-a2≥0(a>0),若p是q的充分不必要条件,则a的取值范围
a≤1
a≤1

查看答案和解析>>

同步练习册答案