精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足a2=0,a6+a8=-10
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
an2n-1
}的前n项和.
分析:(I)
根据等差数列的通项公式化简a2=0和a6+a8=-10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;
(II)
把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①-②后,利用an的通项公式及等比数列的前n项和的公式化简后,即可得到数列{
an
2n-1
}的前n项和的通项公式.
解答:解:(I)设等差数列{an}的公差为d,由已知条件可得
a1+d=0
2a1+12d=-10

解得:
a1=1
d=-1

故数列{an}的通项公式为an=2-n;
(II)设数列{
an
2n-1
}的前n项和为Sn,即Sn=a1+
a2
2
+…+
an
2n-1
①,故S1=1,
Sn
2
=
a1
2
+
a2
4
+…+
an
2n
②,
当n>1时,①-②得:
Sn
2
=a1+
a2-a1
2
+…+
an-an-1
2n-1
-
an
2n

=1-(
1
2
+
1
4
+…+
1
2n-1
)-
2-n
2n

=1-(1-
1
2n-1
)-
2-n
2n
=
n
2n

所以Sn=
n
2n-1

综上,数列{
an
2n-1
}的前n项和Sn=
n
2n-1
点评:此题考查学生灵活运用等差数列的通项公式化简求值,会利用错位相减法求数列的和,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案