精英家教网 > 高中数学 > 题目详情
已知数列{an}满足:an+1=|an-3|+1 (n∈N)
(1)若a1=0,求数列{an}的前n项和Sn
(2)试探求a1的值,使得数列{an}成等差数列.
考点:数列递推式
专题:计算题,等差数列与等比数列
分析:(1)求出a2=4,a3=a4=a5=…=2,即可求数列{an}的前n项和Sn
(2)由(1)知,a3=a4=a5=…=2,可得结论.
解答: 解:(1)∵a1=0,an+1=|an-3|+1,
∴a2=4,a3=a4=a5=…=2,
∴Sn=0+4+2(n-2)=2n;
(2)由(1)知,a3=a4=a5=…=2,
∴a1=a2=2时,数列{an}成等差数列.
点评:本题考查数列递推式,考查数列的求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|0<x-a≤5},B={x|2<x≤6}.
(1)若A∩B=A,求实数a的取值范围;
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an},{bn}都是等差数列,且a1≠b1,它们的前n项的和分别为Sn,Tn,若对一切n∈N,有Sn+3=Tn
(1)分别写出一个符合条件的数列{an}和{bn};
(2)若a1+b1=1,数列{Cn}满足:Cn=4an+λ(-1)n-1•2bn,且当n∈N时,Cn+1≥Cn恒成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,4),求函数f(x2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是R上的偶函数,且当x>0时,函数f(x)的解析式为f(x)=
2
x
-1,若x∈(0,6]时,f(x)≥ax恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且f(x+3)=f(x),f(2)=
2m-3
m+1
,f(1)>1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=
(1+
3
)百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.
(1)试将y表示成x的函数,并求出函数y的解析式;
(2)当x取何值时?整个中转站的占地面积S△OAC最小,并求出其面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆C:(x+2)2+y2=36,P是圆C上的任意一动点,A点坐标为(2,0),线段PA的垂直平分线l与半径CP交于点Q.
(1)求点Q的轨迹G的方程;
(2)已知B,D是轨迹G上不同的两个任意点,M为BD的中点.①若M的坐标为M(2,1),求直线BD所在的直线方程;②若BD不经过原点,且不垂直于x轴,点O为轨迹G的中心.
求证:直线BD和直线OM的斜率之积是常数(定值).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(n,an)(n∈N*)是函数f(x)=
2x+4
x
图象上的点,数列{bn}满足bn=an+λn,若数列{bn}是递增数列,则正实数λ的取值范围是
 

查看答案和解析>>

同步练习册答案