(本小题满分12分)已知函数的图象与轴分别相交于点,
(分别是与轴正半轴同方向的单位向量),函数.
(1)求的值;
(2)当满足时,求函数的最小值.
(1)k=1,b=2.(2)-3.
【解析】
试题分析:(1)由已知得A(,0),B(0,b),则=(,b),于是="2,b=2." ∴k=1,b=2.
(2)由f(x)> g(x),得x+2>x2-x-6,即(x+2)(x-4)<0, 得-2<x<4,
==x+2+-5
由于x+2>0,则≥-3,其中等号当且仅当x+2=1,即x=-1时成立
∴的最小值是-3.
考点:向量的坐标;一次函数、二次函数的性质;基本不等式。
点评:(1)向量的坐标就是其终点的坐标减去起点的坐标。(2)注意基本不等式应用的条件:一正二定三相等。本题把式子化为x+2+-5的形式,从而达到利用基本不等式的条件。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com