精英家教网 > 高中数学 > 题目详情

已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;

(2)若F点是棱PC上一点,且,求的值.

 

(1),(2)

【解析】

试题分析:法一:空间向量法。(1)以为坐标原点,以所在直线分别为轴建立空间直角坐标系。根据已知条件得点的坐标,再得向量的坐标。用向量数量积公式求向量所成角的余弦值,但应注意空间两异面直线所成的角为锐角或直角,所以两异面所成角的余弦值为向量所成角的余弦值的绝对值。(2)根据题意设,根据,可得的值,根据比例关系即可求得的值。法二:普通方法。(1)根据异面直线所成角的定义可过点作//,则(或其补角)就是异面直线所成的角. 因为////,则四边形为平行四边形,则,故可在中用余弦定理求。(2)由可得,过为垂足。易得证平面,可得,从而易得证//,可得,即可求的值。

试题解析:解法一:

(1)如图所示,以点为原点建立空间直角坐标系

故异面直线所成角的余弦值为.

(2)设

在平面内过点作为垂足,则

,∴

解法二:

(1)在平面内,过点作//,连结,则(或其补角)就是异面直线所成的角.

中,

由余弦定理得,

∴异面直线所成角的余弦值为.

(2)在平面内,过为垂足,连结,又因为

平面

由平面平面,∴平面//

,∴

,∴.

考点:1异面直线所成的角;2线线垂直、线面垂直、面面垂直;3空间向量法解立体几何问题。

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年湖北省七市(州)高三年级联合考试理科数学试卷(解析版) 题型:选择题

下列说法错误的是( )

A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”

B.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假

C.若x,y∈R,则“x=y”是的充要条件

D.若命题p:

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(二)理科数学试卷(解析版) 题型:选择题

李先生居住在城镇的A处,准备开车到单位B处上班,途中(不绕行)共要经过6个交叉路口,假设每个交叉路口发生堵车事件的概率均为,则李先生在一次上班途中会遇到堵车次数的期望值是( )

A. B.1 C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(二)文科数学试卷(解析版) 题型:选择题

正四面体ABCD的棱长为1,其中线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是( )

A.[0,] B.[]

C.[] D.[]

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(二)文科数学试卷(解析版) 题型:选择题

,则“”是“”成立的 ( )

A.充分不必要条件 B.必要不充分条件

C.充分必要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(三)理科数学试卷(解析版) 题型:填空题

已知定义在R上的函数f(x),g(x)满足=ax,且f′(x)g(x)+f(x)·g′(x)<0,+=,若有穷数列{}(n∈N*)的前n项和等于,则n等于 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(三)理科数学试卷(解析版) 题型:选择题

已知x,y满足的取值范围是( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三高考模拟冲刺卷(提优卷)(三)文科数学试卷(解析版) 题型:填空题

在△ABC中,角A,B,C的对边分别为a,b,c,已知

bsin=a+ csin,则C= .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省六市六校联盟高考模拟文科数学试卷(解析版) 题型:填空题

已知,则

 

查看答案和解析>>

同步练习册答案