精英家教网 > 高中数学 > 题目详情
8.(1)计算:8${\;}^{\frac{2}{3}}$+($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{2}$-1)0
(2)计算:9${\;}^{lo{g}_{9}2}$+$\frac{1}{3}$log68-2log${\;}_{{6}^{-1}}$$\sqrt{3}$.

分析 (1)根据指数幂的运算性质计算即可,
(2)根据对数的运算性质计算即可.

解答 解:(1)原式=${2}^{3×\frac{2}{3}}$+$(\frac{2}{3})^{4×(-\frac{3}{4})}$-1=4+$\frac{27}{8}$-1=$\frac{51}{8}$,
(2)原式=2+log62+log63=2+log66=3

点评 本题考查了指数幂和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.等比数列{an}中,a4=2,a5=4,则数列{lgan}的前8项和等于12lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:ax+2y=0与直线l2:x+(a-1)y+a2-1=0平行,则实数a的值是(  )
A.-1或2B.0或1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,若a2+b2-c2+ab=0,则C的值是$\frac{2}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax3+3x2+1,若至少存在两个实数m,使得f(-m),f(1)、f(m+2)成等差数列,则过坐标原点作曲线y=f(x)的切线可以作(  )
A.3条B.2条C.1条D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)为增函数,当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(  )
A.(-∞,0)B.$(0,\frac{1}{2})$C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.64+18$\sqrt{3}$B.64+16$\sqrt{3}$C.96D.92-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则(  )
A.$f(6)<f(-7)<f(\frac{11}{2})$B.$f(6)<f(\frac{11}{2})<f(-7)$C.$f(-7)<f(\frac{11}{2})<f(6)$D.$f(\frac{11}{2})<f(-7)<f(6)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$2\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案