精英家教网 > 高中数学 > 题目详情
17.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则(  )
A.$f(6)<f(-7)<f(\frac{11}{2})$B.$f(6)<f(\frac{11}{2})<f(-7)$C.$f(-7)<f(\frac{11}{2})<f(6)$D.$f(\frac{11}{2})<f(-7)<f(6)$

分析 由题意可得函数的周期为4,结合奇偶性和题意可得答案.

解答 解:∵f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
∴函数f(x)是周期为4的周期函数,
f(6)=f(2)=f(0)=0,f($\frac{11}{2}$)=f($\frac{3}{2}$)=-f(-$\frac{1}{2}$)=f($\frac{1}{2}$)=$\sqrt{2}$-1,f(-7)=f(1)=1,
∴$f(6)<f(\frac{11}{2})<f(-7)$,
故选B.

点评 本题考查函数的奇偶性和周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知关于x的不等式|x-a|+|x-3|≥2a的解集为R,则实数a的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)计算:8${\;}^{\frac{2}{3}}$+($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$-($\sqrt{2}$-1)0
(2)计算:9${\;}^{lo{g}_{9}2}$+$\frac{1}{3}$log68-2log${\;}_{{6}^{-1}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是$x=\frac{π}{4ω}$,函数f'(x)的图象的一个对称中心是$({\frac{π}{8},0})$,则f(x)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知关于x的不等式$\frac{lo{g}_{a}x}{lnx}$-$\frac{4}{lnx}$<lnx(a>0且a≠1)对任意的x∈(1,100)恒成立,则实数a的取值范围为(0,1)∪(${e}^{\frac{1}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U={-3,-2,-1,0,1,2,3},集合A={x∈Z|x2-2x-3≤0},则∁UA=(  )
A.{-3,-2}B.{2,3}C.(-3,-2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果过原点的直线l与圆x2+(y-4)2=4切于第二象限,那么直线l的方程是(  )
A.$y=\sqrt{3}x$B.$y=-\sqrt{3}x$C.y=2xD.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{3}$,且过点$({\sqrt{3},2})$.
(1)求椭圆C的方程;
(2)过A(a,0)且相互垂直的两条直线l1,l2,与椭圆C的另一个交点分别为P,Q,问直线PQ是否经过定点?若是,求出该定点的坐标,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设m为实数,函数f(x)=x3-x2-x+m.
(1)求f(x)的极值点;
(2)如果曲线y=f(x)与x轴仅有一个交点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案