精英家教网 > 高中数学 > 题目详情
9.如果过原点的直线l与圆x2+(y-4)2=4切于第二象限,那么直线l的方程是(  )
A.$y=\sqrt{3}x$B.$y=-\sqrt{3}x$C.y=2xD.y=-2x

分析 由已知得圆心坐标为(0,4),半径长为2.因为直线斜率存在.设直线方程为 y=kx,根据圆心到直线的距离等于半径,确定k的值,从而求出直线方程

解答 解:圆心坐标为(0,4),半径长为2.
由直线过原点,当直线斜率不存在时,不合题意,
设直线方程为;y=kx,即kx-y=0.
则圆心到直线的距离d=$\frac{4}{\sqrt{1+{k}^{2}}}$=r=2
化简得:k2=3
又∵切点在第二象限,∴$k=-\sqrt{3}$
∴直线方程为;y=-$\sqrt{3}$x
故选:B.

点评 本题考查直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简求值,考查了数形结合的数学思想,是一道中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知直线l1:ax+2y=0与直线l2:x+(a-1)y+a2-1=0平行,则实数a的值是(  )
A.-1或2B.0或1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.64+18$\sqrt{3}$B.64+16$\sqrt{3}$C.96D.92-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2x-1,则(  )
A.$f(6)<f(-7)<f(\frac{11}{2})$B.$f(6)<f(\frac{11}{2})<f(-7)$C.$f(-7)<f(\frac{11}{2})<f(6)$D.$f(\frac{11}{2})<f(-7)<f(6)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足a1=1,且点P(an,an+1)在直线y=x+2上;数列{bn}的前n项和为Sn,满足Sn=2bn-2,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=anbn,数列{cn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点为F,点B(0,1)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点$(1,\frac{2}{k}]$的直线交椭圆C于M,N两点,交直线x=2于点P,设$\overrightarrow{PM}=λ\overrightarrow{MF}$,$\overrightarrow{PN}=μ\overrightarrow{NF}$,求证:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在三个数${3^{\frac{1}{2}}},\frac{1}{3},{log_3}2$中,最小的数是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2sin2x+$\sqrt{3}$)cosx-sin3x.
(1)求f(x)的最值;
(2)若f(x)=$\sqrt{3}$,x∈(0,π),求x.

查看答案和解析>>

同步练习册答案