精英家教网 > 高中数学 > 题目详情
10.(1)已知a、b∈R+,且a+b=3,求ab2的最大值.
(2)设函数f(x)=|2x+1|-|x-2|,求不等式f(x)>2的解集.

分析 (1)化简得a=3-b,0<b<3;从而可得f(b)=ab2=(3-b)b2=-b3+3b,f′(b)=-3b2+3=-3(b+1)(b-1),从而求得;
(2)通过讨论x的范围,去掉绝对值,求出不等式的解集即可.

解答 解:(1)解:∵a,b∈R+且a+b=3,
∴a=3-b,0<b<3;
f(b)=ab2=(3-b)b2=-b3+3b,
f′(b)=-3b2+3=-3(b+1)(b-1),
故f(b)在(0,1)上是增函数,
在(1,3)上是减函数;
(2)f(x)=$\left\{\begin{array}{l}{-x-3,x<-\frac{1}{2}}\\{3x-1,-\frac{1}{2}≤x<2}\\{x+3,x≥2}\end{array}\right.$,
当x<-$\frac{1}{2}$时,-x-3>2,解得:x<-5,所以x<-5,
当-$\frac{1}{2}$≤x<2时,3x-1>2,解得:x>1,所以1<x<2,
当x≥2时,x+3>2,解得:x>-1,所以x≥2,
综上所述,不等式f(x)>2的解集为(-∞,-5)∪(1,+∞).

点评 本题考查了导数的综合应用及单调性的判断与应用,考查解绝对值不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=2x+2+1的图象过定点(  )
A.(1,2)B.(2,1)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=lnx+2x+x-1,若f(x2-4)<2,则实数x的取值范围是(  )
A.(-2,2)B.(2,$\sqrt{5}$)C.(-$\sqrt{5}$,-2)D.(-$\sqrt{5}$,-2)∪(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在区域$\left\{\begin{array}{l}{x+y-\sqrt{2}≤0}\\{x-y+\sqrt{2}≥0}\\{y≥0}\end{array}\right.$内任取一点P,求点P落在单位圆x2+y2=1内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各式的值:
(1)0.64${\;}^{-\frac{1}{2}}$-(-$\frac{1}{8}$)0+8${\;}^{\frac{2}{3}}$+($\frac{9}{16}$)${\;}^{\frac{1}{2}}$
(2)lg22+lg2•lg5+lg5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若|x-3|+|x+5|>a对于任意x∈R均成立,则实数a的取值范围(-∞,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的不等式ax2-(a+1)x+b<0的解集是{x|1<x<5},则a+b=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设全集U=R,A={x|1≤x≤3},B={x|2a<x<a+3}
(Ⅰ)当a=1时,求(CUA)∩B;
(Ⅱ)若(CUA)∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD是正三角形,且平面PAD⊥平面ABCD,O为棱AD的中点.
(1)求证:PO⊥平面ABCD;
(2)求二面角A-PD-B的大小;
(3)求C点到平面PDB的距离.

查看答案和解析>>

同步练习册答案