精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+1.
(I)解不等式|f(x)|+|f(
x
2
)-3|>4

(II)若x≠0,求证:
|f(x2)-f(y2)|
2|x|
≥|x|-|y|
(I)原不等式可化为|2x+1|+|x-2|>4
当x≤-
1
2
时,不等式化为-2x-1+2-x>4,
∴x<-1,此时x<-1;
当-
1
2
<x<2时,不等式化为2x+1+2-x>4,
∴x>1,此时1<x<2;
当x≥2时,不等式化为2x+1+x-2>4,
∴x>
5
3
,此时x≥2.
综上可得:原不等式的解集为(-∞,-1)∪(1,+∞).
(II)
|f(x2-y2)|
2|x|
=
|x2-y2|
|x|
=
||x|2-|y|2|
|x|
=
||x|+|y||
|x|
•||x|-|y||=|1+
|y|
|x|
|•
||x|-|y||,
∵|1+
|y|
|x|
|≥1,当y=0时取等号,
∴|1+
|y|
|x|
|•
||x|-|y||≥||x|-|y||≥|x|-|y|
因此
|f(x2-y2)|
2|x|
≥|x|-|y|.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案