【题目】如图,在平面直角坐标系中,已知圆:.
⑴若圆的半径为2,圆与 轴相切且与圆外切,求圆的标准方程;
⑵若过原点的直线与圆相交于 两点,且,求直线的方程.
【答案】(1) 或 (2)
【解析】
(1)设出圆的标准方程为,由圆与轴相切,可得,由圆与圆外切,可得两圆心距等于半径之和,由此解出,,的值,得到圆的标准方程;
(2)法一:设出点坐标为,根据,可得到点坐标,把、两点坐标代入圆方程,解出点坐标,即可得到直线的方程;
法二:设的中点为,连结,,设出直线的方程,由题求出的长,利用点到直线的距离即可得求出值,从而得到直线的方程
⑴设圆的标准方程为,故圆心坐标为,半径;
因为圆的半径为2,与轴相切,所以①
因为圆与圆外切
所以,即②
由①②解得
故圆的标准方程为或
⑵方法一;设
因为,所以为的中点,从而
因为,都在圆上
所以
解得或
故直线的方程为:
方法二:设的中点为,连结,
设,
因为,所以
在中,③
在中,④
由③④解得
由题可知直线的斜率一定存在,设直线的方程为
则,解得
故直线的方程为
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围;
(3)若,函数在上的上界是,求的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C: +y2=1上,过M做x轴的垂线,垂足为N,点P满足 = .
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点Q在直线x=﹣3上,且 =1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是( )
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比在B地晚秒. A地测得该仪器弹至最高点H时的仰角为30°.
(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cosx,C2:y=sin(2x+ ),则下面结论正确的是( )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答下列问题:
(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程;
(2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,当x>0时,解析式为f(x)=.
(1)求f(x)在R上的解析式;
(2)用定义证明f(x)在(0,+∞)上为减函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com