精英家教网 > 高中数学 > 题目详情

【题目】某产品的三个质量指标分别为xyz,用综合指标Sxyz评价该产品的等级.若S≤4, 则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的样本数据估计该批产品的一等品率;

(2)在该样本的一等品中, 随机抽取2件产品,

() 用产品编号列出所有可能的结果;

() 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4求事件B发生的概率.

【答案】(1)0.6;(2)

【解析】试题分析:(1)首先将3项指标相加,求出综合指标S.然后找出其中的产品,便可估计出该批产品的一等品率.2)(1)根据(1)题结果可知, 为一等品,共6.从这6件一等品中随机抽取2件产品的所有可能结果为: ,共15.2)在该样本的一等品中,综合指标S等于4的产品编号分别为,则事件B发生的所有可能结果为6.由古典概型概率公式可得事件B发生的概率.

试题解析:(110件产品的综合指标S如下表所示:

产品编号











S

4

4

6

3

4

5

4

5

3

5

其中的有,共6件,故该样本的一等品率为,从而可估计该批产品的一等品率为.

2)(1)在该样本的一等品中,随机抽取2件产品的所有可能结果为,共15.2)在该样本的一等品中,综合指标S等于4的产品编号分别为,则事件B发生的所有可能结果为6.所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程是,双曲线的左右焦点分别为的左右顶点,而的左右顶点分别是的左右焦点.

1)求双曲线的方程;

2)若直线与双曲线恒有两个不同的交点,且的两个交点AB满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的二次方程px2+(p﹣1)x+p+1=0有两个不相等的正根,且一根大于另一根的两倍,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为椭圆 的左、右焦点,点在椭圆上,且面积的最大值为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点, 的面积为1, ),当点在椭圆上运动时,试问是否为定值?若是定值,求出这个定值;若不是定值,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中
①函数f(x)=( x的递减区间是(﹣∞,+∞);
②若函数f(x)= ,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),曲线在点处的切线与直线垂直.

(Ⅰ)试比较的大小,并说明理由;

(Ⅱ)若函数有两个不同的零点 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),对任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,则(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中的奇函数是(
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a≠0,函数f(x)= ,若f(1﹣a)=f(1+a),则a的值为(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

同步练习册答案