精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的定义域为(-1,1),并且对一切x,y∈(-1,1)恒有f(x)+f(y)=f(x+y);且当x>0时,f(x)<0;
(1)判断该函数的奇偶性;
(2)判断并证明该函数的单调性;
(3)若f(1-m)+f(1-m2)>0,求实数m的取值范围.
分析:(1)令x=y=0,得f(0)=0,再令y=-x,即可判断该函数的奇偶性;
(2)令-1<x1<x2<1,作差f(x2)-f(x1)后判断符号即可判断该函数的单调性;
(3)利用(2)中该函数的单调性与(1)中的奇偶性,可脱掉f(1-m)+f(1-m2)>0,中的“f”,得到关于m的不等式组,解之即可.
解答:解:(1)令x=y=0,得f(0)=0;
再令y=-x,
则f(x)+f(-x)=f(x-x)=f(0)=0,
∴f(-x)=-f(x),又y=f(x)的定义域为(-1,1),
∴函数y=f(x)为奇函数;
(2)令-1<x1<x2<1,
则x2-x1>0,
∵x>0时,f(x)<0;
∴f(x2-x1)<0
又y=f(x)为奇函数,
∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,
∴f(x2)<f(x1),
∴函数在(-1,1)上单调递减;
(3)依题意,f(1-m)+f(1-m2)>0?f(1-m)>f(m2-1),
∵函数在(-1,1)上单调递减;
-1<1-m<1
-1<1-m2<1
1-m<m2-1
,解得1<m<
2

∴实数m的取值范围是(1,
2
).
点评:本题考查抽象函数及其应用,着重考查函数奇偶性与单调性的应用,考查解不等式组的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案