精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\sqrt{x}$在[0,+∞)是(  )
A.减函数B.增函数C.奇函数D.偶函数

分析 直接利用函数的单调性判断即可.

解答 解:函数f(x)=$\sqrt{x}$在[0,+∞)是增函数.
故选:B.

点评 本题考查基本函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知sin(3π+α)=2sin($\frac{3π}{2}$+α),求下列各式的值.
(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;            
(2)sin2α+sin2α+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设有两条直线a、b和三个平面α、β、γ,则下列命题中错误的是(  )
A.若a∥α,a∥b,b?α,则b⊥αB.若α∥β,β∥γ,则α∥γ
C.若a⊥α,a⊥b,b?α,则b∥αD.若α⊥γ,β∥γ,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤1}\\{x+y-2≥0}\\{x-y-1≤0}\end{array}\right.$,则目标函数z=2x-y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,若$\overrightarrow{AC}?\overrightarrow{AB}=4$,且$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,则△ABC的面积等于(  )
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正项等比数列中a3=125,a1=25,则公比q=(  )
A.5B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$f(x)=\left\{\begin{array}{l}{2^x}-1+k(1-{a^2}),x≥0\\{x^2}-2x+{(2-a)^2},x<0\end{array}\right.,a∈R$,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是(  )
A.0≤k≤3B.k≥3C.k≤0或k≥3D.k≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=({-3,1,\sqrt{6}})$,则与向量$\overrightarrow a$共线的单位向量为(  )
A.$({-3,1,\sqrt{6}})$和$({3,-1,-\sqrt{6}})$B.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$
C.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$和$({\frac{3}{4},-\frac{1}{4},-\frac{{\sqrt{6}}}{4}})$D.$({3,-1,-\sqrt{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}、{bn}满足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^2}$
(1)证明数列{$\frac{1}{{b}_{n}-1}$}是等差数列   
(2)求数列{bn}的通项公式;
(3)若bn>k对任意的n∈N*恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案