精英家教网 > 高中数学 > 题目详情
18.在△ABC中,角A,B,C所对的边分别是a,b,c,若$\overrightarrow{AC}?\overrightarrow{AB}=4$,且$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,则△ABC的面积等于(  )
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{2}$

分析 由已知利用余弦定理可求cosA,进而可求A的值,利用平面向量数量积的运算可求bc的值,即可利用三角形面积公式计算求值得解.

解答 解:由$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,得:$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=-\frac{1}{2}$,
得:$A=\frac{2π}{3}$,
又$\overrightarrow{AC}?\overrightarrow{AB}=4$,得:$\left|\overrightarrow{AC}\right|\left|\overrightarrow{AB}\right|cosA=-4$,得:$\left|\overrightarrow{AC}\right|\left|\overrightarrow{AB}\right|cosA=-4$,
可得:bc=8,
则${S}_{△ABC}=\frac{1}{2}bcsinA=\frac{1}{2}×8×\frac{\sqrt{3}}{2}=2\sqrt{3}$.
故选:C.

点评 本题考查正弦定理、余弦定理、平面向量的数量积、三角形面积的求法,意在考查考生的运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知实数20,m2,52构成一个等差数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1(m<0)的离心率为(  )
A.$\frac{\sqrt{30}}{6}$B.$\sqrt{7}$C.$\frac{\sqrt{30}}{6}$或$\sqrt{7}$D.$\frac{5}{6}$或7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在复平面内,若复数z1,z2对应的向量分别是$\overrightarrow{OA},\overrightarrow{OB}$,则复数$\frac{z_1}{z_2}$所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}$+ln$\frac{x}{x-1}$.
(Ⅰ)求证:f(x)图象关于点($\frac{1}{2}$,$\frac{1}{2}$)中心对称;
(Ⅱ)定义Sn=$\sum_{i=1}^{n-1}$f($\frac{i}{n}$)=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),其中n∈N*且n≥2,求Sn
(Ⅲ)对于(Ⅱ)中的Sn,求证:对于任意n∈N*都有lnSn+2-lnSn+1>$\frac{1}{{n}^{2}}$-$\frac{1}{{n}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,点(n,$\frac{Sn}{n}$),n∈N*均在函数的图象上.
(1)求数列的{an}通项公式;
(2)若{bn}为等比数列,且b1=1,b1b2b3=27,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\sqrt{x}$在[0,+∞)是(  )
A.减函数B.增函数C.奇函数D.偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A=[-1,2),B={x|x<a},若A∩B≠∅,则a的取值范围是(  )
A.-1<a≤2B.a>2C.a≥-1D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求函数f(x)=lg(2sin2x-1)的定义域
(2)求值:${log_2}cos\frac{π}{9}+{log_2}cos\frac{2π}{9}+{log_2}cos\frac{4π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于命题p:?x0∈R,使${sin^2}{x_0}+\frac{4}{{{{sin}^2}{x_0}}}$最小值为4;命题q:?x∈R,都有x2+x+1>0,给出下列结论正确的是(  )
A.命题“p∧q”是真命题B.命题“¬p∧q”是真命题
C.命题“p∧¬q”是真命题D.命题“¬p∨¬q”是假命题

查看答案和解析>>

同步练习册答案