精英家教网 > 高中数学 > 题目详情
7.(1)求函数f(x)=lg(2sin2x-1)的定义域
(2)求值:${log_2}cos\frac{π}{9}+{log_2}cos\frac{2π}{9}+{log_2}cos\frac{4π}{9}$.

分析 (1)利用对数函数的定义域以及三角函数线求解即可.
(2)利用对数运算法则以及二倍角公式化简求解即可.

解答 解:(1)函数f(x)=lg(2sin2x-1)有意义,
可得2sin2x-1>0,即sin2x>$\frac{1}{2}$.可得2k$π+\frac{π}{6}$<2x<2kπ+$\frac{5π}{6}$,k∈Z,
解得k$π+\frac{π}{12}$<x<kπ+$\frac{5π}{12}$,k∈Z,
函数的定义域为:{x|k$π+\frac{π}{12}$<x<kπ+$\frac{5π}{12}$,k∈Z}.
(2):${log_2}cos\frac{π}{9}+{log_2}cos\frac{2π}{9}+{log_2}cos\frac{4π}{9}$=$lo{g}_{2}(cos\frac{π}{9}cos\frac{2π}{9}cos\frac{4π}{9})$=log2($\frac{8sin\frac{π}{9}cos\frac{π}{9}cos\frac{2π}{9}cos\frac{4π}{9}}{8sin\frac{π}{9}}$)
=$lo{g}_{2}(\frac{sin\frac{8π}{9}}{8sin\frac{π}{9}})$=-3.

点评 本题考查三角函数的定义域,三角函数线,二倍角公式的应用,对数运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.将y=cos(2x+$\frac{π}{4}$)图象上每点纵坐标不变,横坐标变为原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{16}$个单位得到的函数表达式是y=(  )
A.cos(x+$\frac{3π}{16}$)B.cos(4x+$\frac{3π}{16}$)C.cos4xD.cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别是a,b,c,若$\overrightarrow{AC}?\overrightarrow{AB}=4$,且$\frac{{a}^{2}-{(b+c)}^{2}}{bc}=1$,则△ABC的面积等于(  )
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{3}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$f(x)=\left\{\begin{array}{l}{2^x}-1+k(1-{a^2}),x≥0\\{x^2}-2x+{(2-a)^2},x<0\end{array}\right.,a∈R$,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是(  )
A.0≤k≤3B.k≥3C.k≤0或k≥3D.k≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的定义域为R,$f(\frac{1}{2})=2$,且对任意的实数a,b满足f(a+b)=f(a)+f(b)-1,当$x>-\frac{1}{2}$时,f(x)>0.
(1)求$f(-\frac{1}{2})$的值;
(2)求证:当x>0时,f(x)>1;
(3)求证:f(x)在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=({-3,1,\sqrt{6}})$,则与向量$\overrightarrow a$共线的单位向量为(  )
A.$({-3,1,\sqrt{6}})$和$({3,-1,-\sqrt{6}})$B.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$
C.$({-\frac{3}{4},\frac{1}{4},\frac{{\sqrt{6}}}{4}})$和$({\frac{3}{4},-\frac{1}{4},-\frac{{\sqrt{6}}}{4}})$D.$({3,-1,-\sqrt{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从某校高三的1000名学生中用随机抽样的方法,得到其中100人的身高数据(单位:cm,所得数据均在[140,190]上),并制成频率分布直方图(如图所示),由该图可估计该校高三学生中身高不低于165cm的人数约为(  )
A.500B.550C.600D.700

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数,又在区间(0,+∞)内是减函数的是(  )
A.$y={(\frac{1}{2})^x}$B.y=cosxC.y=ln|x|D.y=1-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\frac{4}{1+x}$,若f(a)=2,则实数a=1.

查看答案和解析>>

同步练习册答案