精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)的定义域为R,$f(\frac{1}{2})=2$,且对任意的实数a,b满足f(a+b)=f(a)+f(b)-1,当$x>-\frac{1}{2}$时,f(x)>0.
(1)求$f(-\frac{1}{2})$的值;
(2)求证:当x>0时,f(x)>1;
(3)求证:f(x)在R上是增函数.

分析 (1)先求出f(0)=1,再求出求$f(-\frac{1}{2})$的值;
(2)设x>0,则x-$\frac{1}{2}$$>-\frac{1}{2}$,利用f(x)=f[(x-$\frac{1}{2}$)+$\frac{1}{2}$]=f(x-$\frac{1}{2}$)+f($\frac{1}{2}$)-1>f($\frac{1}{2}$)-1,即可证明;
(3)设x2>x1,则x2-x1>0,且f(x2)-f(x1)=$f[{x_1}+({x_2}-x_1^{\;})]-f({x_1})$,即可证明.

解答 (1)解:令a=b=0,则f(0)=f(0)+f(0)-1,∴f(0)=1,
∴f($\frac{1}{2}$-$\frac{1}{2}$)=f($\frac{1}{2}$)+f(-$\frac{1}{2}$)-1=0,
∴f(-$\frac{1}{2}$)=1-f($\frac{1}{2}$)=-1;
(2)证明:设x>0,则x-$\frac{1}{2}$$>-\frac{1}{2}$,
∴f(x)=f[(x-$\frac{1}{2}$)+$\frac{1}{2}$]=f(x-$\frac{1}{2}$)+f($\frac{1}{2}$)-1>f($\frac{1}{2}$)-1=1;
(3)证明:设x2>x1,则x2-x1>0,且f(x2)-f(x1)=$f[{x_1}+({x_2}-x_1^{\;})]-f({x_1})$
=$f({x_1})+f({x_2}-x_1^{\;})-1-f({x_1})$=$f({x_2}-x_1^{\;})-1>0$,
所以f(x)在R上是增函数.

点评 本题考查抽象函数的单调性,考查赋值法的运用,正确赋值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若$\frac{2i}{a+bi}$=1+i(a,b∈R),则(a+bi)2=(  )
A.0B.-2iC.2iD.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,点(n,$\frac{Sn}{n}$),n∈N*均在函数的图象上.
(1)求数列的{an}通项公式;
(2)若{bn}为等比数列,且b1=1,b1b2b3=27,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A=[-1,2),B={x|x<a},若A∩B≠∅,则a的取值范围是(  )
A.-1<a≤2B.a>2C.a≥-1D.a>-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2,|{\overrightarrow a+\overrightarrow b}|=\sqrt{5}$,则向量$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为(  )
A.$-\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{6}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)求函数f(x)=lg(2sin2x-1)的定义域
(2)求值:${log_2}cos\frac{π}{9}+{log_2}cos\frac{2π}{9}+{log_2}cos\frac{4π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C:x2+y2+2x+4y+4=0,直线l:sinθx+cosθy-4=0,则直线,与圆C的位置关系为相离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A、B两点,且∠AOB=120°(O为坐标原点),则圆的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.经过平面外两点可作与该平面平行的平面个数为0或1.

查看答案和解析>>

同步练习册答案