精英家教网 > 高中数学 > 题目详情
12.若$\frac{2i}{a+bi}$=1+i(a,b∈R),则(a+bi)2=(  )
A.0B.-2iC.2iD.2

分析 把已知等式变形,求得a+bi,代入(a+bi)2,展开后得答案.

解答 解:∵$\frac{2i}{a+bi}$=1+i,∴$a+bi=\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2+2i}{2}=1+i$,
则(a+bi)2=(1+i)2=2i.
故选:C.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列求导运算正确的是(  )
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(3x)′=3x•log3eC.(log2x)′=$\frac{1}{xln2}$D.(x2cosx)′=-2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD内一点,且满足x$\overrightarrow{AB}$+y$\overrightarrow{AD}$+$\overrightarrow{PA}$=$\overrightarrow{0}$(x,y∈R),则当点P满足∠PAB=45°,∠PAD=15°时,实数x,y应满足关系式为(  )
A.x+(1-$\sqrt{3}$)y=0(x>0,y>0)B.x-y=0(x>0,y>0)C.x-$\sqrt{2}$y=0(x>0,y>0)D.x-($\sqrt{3}$+1)y=0(x>0,y>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列四个命题:
①若$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,则$\overrightarrow{p}$与$\overrightarrow{a}$,$\overrightarrow{b}$共面;   
②若$\overrightarrow{p}$与$\overrightarrow{a}$,$\overrightarrow{b}$共面,则$\overrightarrow{p}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$.
③若$\overrightarrow{MP}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$,则P,M,A、B共面;
其中真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.且|OA|+|OB|=2|AB|.
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将y=cos(2x+$\frac{π}{4}$)图象上每点纵坐标不变,横坐标变为原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{16}$个单位得到的函数表达式是y=(  )
A.cos(x+$\frac{3π}{16}$)B.cos(4x+$\frac{3π}{16}$)C.cos4xD.cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\sqrt{2}sin(ωx+\frac{π}{4})(ω>0)$的最小正周期为π,下列四个判断:
(1)当$x∈[0,\frac{π}{2}]$时,f(x)的最小值为-1;
(2)函数f(x)的图象关于直线$x=\frac{π}{8}$对称;
(3)函数f(x)的图象可由$y=\sqrt{2}cos2x$的图象向右平移$\frac{π}{4}$个单位长度得到;
(4)函数f(x)在区间$[\frac{π}{8},\frac{3π}{8}]$上是减函数.
以上正确判断的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{1}{2^x}}&{x≤1}\\{-{{log}_2}x}&{x>1}\end{array}}$则满足不等式f(2a-1)>f(a+1)的实数a的取值范围是(  )
A.(-∞,2)B.(0,1)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的定义域为R,$f(\frac{1}{2})=2$,且对任意的实数a,b满足f(a+b)=f(a)+f(b)-1,当$x>-\frac{1}{2}$时,f(x)>0.
(1)求$f(-\frac{1}{2})$的值;
(2)求证:当x>0时,f(x)>1;
(3)求证:f(x)在R上是增函数.

查看答案和解析>>

同步练习册答案