分析 (1)利用诱导公式求得 tanα=2,再利用同角三角函数的基本关系求得要求式子的值.
(2)利用同角三角函数的基本关系以及 tanα=2,求得要求式子的值.
解答 解:(1)sin(3π+α)=2sin($\frac{3π}{2}$+α),∴-sinα=-2cosα,∴tanα=2,
∴$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=$\frac{-2}{12}$=-$\frac{1}{6}$.
(2)sin2α+sin2α+1=$\frac{{sin}^{2}α+2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$+1=$\frac{{tan}^{2}α+2tanα}{{tan}^{2}α+1}$+1=$\frac{4+4}{4+1}$+1=$\frac{8}{5}$+1=$\frac{13}{5}$.
点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{30}}{6}$ | B. | $\sqrt{7}$ | C. | $\frac{\sqrt{30}}{6}$或$\sqrt{7}$ | D. | $\frac{5}{6}$或7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com