精英家教网 > 高中数学 > 题目详情

若向量=(-1,x)与=(-x, 2)共线且方向相同,求x


解析:

=(-1,x)与=(-x, 2) 共线   ∴(-1)×2- x??(-x)=0

   ∴x=±    ∵方向相同     ∴x=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量
a
=(x-1 , 2)
b
=(y , -4)
共线,则9x+3y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西山区模拟)设x,y∈R,
i
j
为直角坐标平面内x,y轴正方向上单位向量,若向量
a
=(x+
3
)
i
+y
j
b
=(x-
3
)
i
+y
j
,且|
a
|+|
b
|=2
6

(1)求点M(x,y)的轨迹C的方程;
(2)若直线L与曲线C交于A、B两点,若
OA
OB
=0
,求证直线L与某个定圆E相切,并求出定圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下结论:(1)x,y∈R,若x2+y2=0,则x=0或y=0的否命题是假命题;
(2)若非零向量
a
b
c
两两成的夹角均相等,则夹角为0°或120°
(3)若(1+x)10=a0+a1x+a2x2+…+a10x10,则a0+a1+2a2+3a3+…10a10=10×29
(4)实数x,y满足4x2-5xy+4y2=5,设S=x2+y2,则
1
Smax
+
1
Smin
=
7
5

(5)函数f(x)=
sinx,(sinx≤cosx)
cosx,(sinx>cosx)
为周期函数,且最小正周期T=2π
其中正确的结论的序号是:
(1)(5)
(1)(5)
(写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,若向量
a
=(x,y+2)
b
=(x,y-2)
,且|
a
|-|
b
|=2
,则点M(x,y)的轨迹C的方程为
y2-
x2
3
=1(y>0)
y2-
x2
3
=1(y>0)

查看答案和解析>>

同步练习册答案