精英家教网 > 高中数学 > 题目详情

(本题满分12分)

如图6,在平面直角坐标系中,设点,直线:,点在直线上移动,

 

是线段轴的交点, .

(I)求动点的轨迹的方程

(II)设圆,且圆心在曲线上,是圆轴上截得的弦,当运动时弦长是否为定值?请说明理由.

 

【答案】

解:(Ⅰ)依题意知,直线的方程为:.点是线段

的中点,且,∴是线段的垂直平分线.

是点到直线的距离.

∵点在线段的垂直平分线,∴

故动点的轨迹是以为焦点,为准线的抛物线,

其方程为:

(Ⅱ)轴的距离为,圆的半径

,则

由(Ⅰ)知,所以,是定值.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案