精英家教网 > 高中数学 > 题目详情

已知函数f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函数,在(-∞,-2)上为减函数.

(1)求f(x)的表达式;

(2)若当x∈时,不等式f(x)<m恒成立,求实数m的值;

(3)是否存在实数b使得关于x的方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,若存在,求实数b的取值范围.

(1)f(x)=(1+x)2-ln(1+x)2(2)使原不等式恒成立只需m>e2-2即可(3)存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件


解析:

  (1)∵f′(x)=2(1+x)-

=2·,

依题意f(x)在(-2,-1)上是增函数,在(-∞,-2)上为减函数.∴x=-2时,f(x)有极小值,∴f′(-2)=0.

代入方程解得a=1,

故f(x)=(1+x)2-ln(1+x)2.

(2)由于f′(x)=2(1+x)-=,

令f′(x)=0,得x1=0,x2=-2.

(由于x∈,故x2=-2舍去),易证函数在上单调递减,

在[0,e-1]上单调递增,且f()=+2,f(e-1)=e2-2>+2,

故当x∈时,f(x)max=e2-2,

因此若使原不等式恒成立只需m>e2-2即可.

(3)若存在实数b使得条件成立,

方程f(x)=x2+x+b

即为x-b+1-ln(1+x)2=0,

令g(x)=x-b+1-ln(1+x)2,

则g′(x)=1-=,

令g′(x)>0,得x<-1或x>1,

令g′(x)<0,得-1<x<1,

故g(x)在[0,1]上单调递减,在[1,2]上单调递增,要使方程f(x)=x2+x+b在区间[0,2]上恰好有两个相异的实根,只需g(x)=0在区间[0,1]和[1,2]上各有一个实根,于是有2-2ln2<b≤3-2ln3,

故存在这样的实数b,当2-2ln2<b≤3-2ln3时满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案