精英家教网 > 高中数学 > 题目详情
10.已知f(x)=(x2-4)(x-a),其中a∈R.
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,4]上的最大值.

分析 (1)根据导数的运算法则计算即可,
(2)根据f′(-1)=0即可求出a的值,由导数和函数的单调的关系判断f(x)在[-2,4]上单调性,即可求出最值.

解答 解:(1)f(x)=x3-ax2-4x+4a,
∴f′(x)=3x2-2ax-4.   
(2)由f'(-1)=0得3+2a-4=0,∴$a=\frac{1}{2}$.
则$f(x)=x{\;}^3-\frac{1}{2}{x^2}-4x+2$,
∴$f'(x)=3{x^2}-x-4=3(x+1)(x-\frac{4}{3})$,
当x∈$[-2,-1)∪(\frac{4}{3},4]$时,f'(x)>0,
∴f(x)的单调递增区间是[-2,-1)和$(\frac{4}{3},4]$;
当x∈$(-1,\frac{4}{3})$时,f'(x)<0,
∴f(x)的单调递减区间是$(-1,\frac{4}{3})$. 
∵$f(-1)=\frac{9}{2}$,f(4)=42,
∴f(x)在[-2,4]上的最大值fmax(x)=f(4)=42.

点评 本题考查了导数和函数的极值、最值的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
使用年限x(年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90;$\sum_{i=1}^{5}$xiyi=112.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=loga(x+b)的大致图象如图所示,其中a,b(a>0且a≠1)为常数,则函数g(x)=ax+b的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(x-m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为(  )
A.1B.$\sqrt{e}$C.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+1,(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a2=4b时,求函数y=f(x)+g(x)在(-∞,0]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-$\frac{1}{2}$x-2x+c(c为常数),若x∈[-1,2]时,f(x)<c2恒成立,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex(lnx+1)在[$\frac{1}{e^2}$,1]上的最小值为m,则ln|m|的值是(  )
A.0B.$\frac{1}{e}$C.$\frac{1}{e^2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用秦九韶算法求函数f(x)=x5+x3+x2+x+1,当x=3时的函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+a
(1)求f(x)的单调区间和极值;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

查看答案和解析>>

同步练习册答案