精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=loga(x+b)的大致图象如图所示,其中a,b(a>0且a≠1)为常数,则函数g(x)=ax+b的大致图象为(  )
A.B.C.D.

分析 由图象可知对数的底数满足0<a<1,且0<f(0)<1,再根据指数函数g(x)=ax+b的性质即可推得.

解答 解:由图象可知0<a<1且0<f(0)<1,
即 $\left\{\begin{array}{l}{0<a<1,①}\\{0<lo{g}_{a}b<1,②}\end{array}\right.$  
解②得loga1<logab<logaa,
∵0<a<1∴由对数函数的单调性可知a<b<1,
结合①可得a,b满足的关系为0<a<b<1,
由指数函数的图象和性质可知,g(x)=ax+b的图象是单调递减的,且一定在x轴上方.
故选:B.

点评 本小题主要考查对数函数的图象、指数函数的图象、对数函数的图象的应用、方程组的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆$C:\frac{x^2}{a^2}+{y^2}=1(a>1)$的上顶点为A,右焦点为F,直线AF与圆M:x2+y2-6x-2y+7=0相切.
(1)求椭圆C的方程;
(2)若不过点A的动直线l与椭圆相交于P,Q两点,且$\overrightarrow{AP}•\overrightarrow{AQ}=0$,试问直线l能否过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,若sin2B=sinA•sinC,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=2lnx+$\frac{a}{{x}^{2}}$(a>0).若当x∈(0,+∞)时,f(x)≥2恒成立,则实数a的取值范围是[e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图的程序框图,若输出的S的值为-88,则判断框中的条件可能为(  )
A.n>6?B.n≥7?C.n>8?D.n>9?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于曲线C:$\frac{x^2}{4-k}$+$\frac{y^2}{k-1}$=1,给出下面四个命题:
①曲线C不可能表示椭圆;    
②若曲线C表示双曲线,则k<1或k>4;
③当1<k<4时,曲线C表示椭圆;
④若曲线C表示焦点在x轴上的椭圆,则1<k<$\frac{5}{2}$.
其中所有正确命题的序号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=27x-x3在区间[-4,2]上的最小值是-54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(x2-4)(x-a),其中a∈R.
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx+1}{x}$.
(1)求函数f(x)的单调区间,并判断是否有极值;
(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围.

查看答案和解析>>

同步练习册答案