精英家教网 > 高中数学 > 题目详情
13.函数f(x)=27x-x3在区间[-4,2]上的最小值是-54.

分析 利用导数和函数的最值的关系即可求出函数的最小值.

解答 解:∵f(x)=27x-x3,x∈[-4,2],
∴f′(x)=27-3x2=-3(x+3)(x-3),
令f′(x)=0,解得x=-3,
当-4≤x<-3时,f′(x)<0,函数单调递减,
当-3≤x≤2时,f′(x)>0,函数单调递增,
∴当x=-3时,函数f(x)取得最小值,f(-3)=-3×27-(-3)3=-54.
故答案为:-54.

点评 本题考查了利用导数研究函数的单调性极值与最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某地规定本地最低生活保障x元不低于800元,则这种不等关系写成不等式为x≥800.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=48x-x3,x∈[-3,5]
(1)求单调区间;
(2)求最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=loga(x+b)的大致图象如图所示,其中a,b(a>0且a≠1)为常数,则函数g(x)=ax+b的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{e^x}{x}$.
(Ⅰ)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(Ⅱ)当x>0时,求证:f(x)>x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(x-m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为(  )
A.1B.$\sqrt{e}$C.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+1,(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a2=4b时,求函数y=f(x)+g(x)在(-∞,0]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex(lnx+1)在[$\frac{1}{e^2}$,1]上的最小值为m,则ln|m|的值是(  )
A.0B.$\frac{1}{e}$C.$\frac{1}{e^2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.已知命题p:?x0>0,2x0=3,则¬p是?x≤0,2x≠3
B.“p∧q为假命题”是“p∨q为假命题”的充分不必要条件
C.命题“?x∈(0,1),lnx+x2=0”是真命题
D.命题“?x∈R,sinx<x”是真命题

查看答案和解析>>

同步练习册答案