精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=48x-x3,x∈[-3,5]
(1)求单调区间;
(2)求最值.

分析 (1)根据导数和函数单调性的关系即可求出单调区间,
(2)分别求出端点值和极大值,即可求出最值

解答 解:(1)由于f′(x)=48-3x2,x∈[-3,5],
令f′(x)=48-3x2=0,解得x=4或x=-4(舍去),
当f′(x)>0,即-3≤x≤4时,函数f(x)单调递增,
当f′(x)<0,即4<x≤5时,函数f(x)单调递减,
故函数f(x)在[-3,4]上单调递增,在(4,5]上单调递减,
(2)由(1)可知,f(x)max=f(4)=128,
∵f(-3)=-117,f(5)=-115,
∴f(x)min=-117.

点评 本题考查了导数和函数的极值最值的关系,掌握求最值的步骤是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-ax+b,经过曲线y=f(x)外的一点(1,0)作该曲线的切线恰有两条.
(1)求f(x)的极小值(用a表示);
(2)若存在x0∈(0,+∞),使得$f({x_0})>{x_0}•{e^{x_0}}+a$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的公差$d=\frac{3}{4}$,${a_{30}}=15\frac{3}{4}$,则a1=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,若sin2B=sinA•sinC,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则(  )
A.b=-2,c=3B.b=-2,c=2C.b=-2,c=-1D.b=2,c=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=2lnx+$\frac{a}{{x}^{2}}$(a>0).若当x∈(0,+∞)时,f(x)≥2恒成立,则实数a的取值范围是[e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图的程序框图,若输出的S的值为-88,则判断框中的条件可能为(  )
A.n>6?B.n≥7?C.n>8?D.n>9?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=27x-x3在区间[-4,2]上的最小值是-54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x-1)e-x
(I)求f(x)的单调区间;
(II)若对?x∈[0,+∞),都有f(x)≤$\frac{1}{{c}^{2}}$,求实数c的取值范围.

查看答案和解析>>

同步练习册答案