精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=ex(lnx+1)在[$\frac{1}{e^2}$,1]上的最小值为m,则ln|m|的值是(  )
A.0B.$\frac{1}{e}$C.$\frac{1}{e^2}$D.1

分析 求出f(x)的导数,得到f(x)在[$\frac{1}{e^2}$,1]上递增,从而求出m的值,代入ln|m|计算即可.

解答 解:$f'(x)={e^x}({lnx+\frac{1}{x}+1})$,
令$g(x)=lnx+\frac{1}{x}+1$,
∴$g'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{x-1}{x^2}$,
∴g(x)在(0,1)上递减,在(1,+∞)上递增,
∴g(x)≥g(1)=2>0,∴f'(x)>0,
∴f(x)在$[{\frac{1}{e^2},\;\;1}]$上为增函数,
∴$m=f({\frac{1}{e^2}})=-{e^{\frac{1}{e^2}}}$,
∴$ln|m|=\frac{1}{e^2}$,
故选:C.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及对数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.△ABC中,若sin2B=sinA•sinC,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=27x-x3在区间[-4,2]上的最小值是-54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(x2-4)(x-a),其中a∈R.
(1)求f′(x);
(2)若f′(-1)=0,求f(x)在[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{{x^2}+2x+a}}{x}$(x>0).
(I)当a>0时,求函数f(x)的最小值;
(Ⅱ)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等比数列{an}中,a1=1,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-an),则f′(0)(  )
A.0B.16C.64D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x-1)e-x
(I)求f(x)的单调区间;
(II)若对?x∈[0,+∞),都有f(x)≤$\frac{1}{{c}^{2}}$,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx+1}{x}$.
(1)求函数f(x)的单调区间,并判断是否有极值;
(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.西部某县教委将7位大学生志愿者(4男3女)分成两组,分配到两所小学支教,若要求女生不能单独成组,且每组最多5人,则不同的分配方案共有(  )
A.36种B.68种C.104种D.110种

查看答案和解析>>

同步练习册答案