精英家教网 > 高中数学 > 题目详情
设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
(1);(2)

试题分析:(1)设点,而,根据中点,可得将其代入椭圆方程整理可得点的轨迹方程。(2)为了省去对直线斜率的讨论,可设直线方程为,分别与两曲线方程联立消去得关于的一元二次方程,有求根公式可得方程的根,即各点的纵坐标。由已知,可得,即。从而可得的值。
试题解析:(1)设点,而,故点的坐标为,代入椭圆方程得:,即线段PF的中点M的轨迹C2的方程为:
(2)设直线l的方程为:,解方程组,?当时,则,解方程组
,由题设,可得,有,所以=,即),由此解得:,故符合题设条件的其中一条直线的斜率;?当时,同理可求得另一条直线方程的斜率,故所求直线l的方程是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点和点
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆锥曲线r的两个焦点分别为,若曲线r上存在点P满足,则曲线r的离心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴在轴上,焦距为,则等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点为,点在椭圆上,如果线段的中点在轴上,那么的(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C的焦点、实轴端点恰好是椭圆的长轴的端点、焦点,则双曲线C的方程为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1∶x=的距离之比为常数.
(1)求曲线C的轨迹方程;
(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求·的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点是椭圆上一点,为椭圆的一个焦点,且轴,焦距,则椭圆的离心率是        

查看答案和解析>>

同步练习册答案