精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则f[f(-1)]=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2P

分析 先求出f(-1)=2-1=$\frac{1}{2}$,从而f[f(-1)]=f($\frac{1}{2}$),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,
∴f(-1)=2-1=$\frac{1}{2}$,
f[f(-1)]=f($\frac{1}{2}$)=$(\frac{1}{2})^{2}=\frac{1}{4}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设m、n是两条不同的直线α、β是两个不同的平面,有下列四个命题:
①如果α∥β,m?α,那么m∥β;
②如果m⊥α,β⊥α,那么m∥β;
③如果m⊥n,m⊥α,n∥β,那么α⊥β;
④如果m∥β,m?α,α∩β=n,那么m∥n
其中正确的命题是(  )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在(1,2)上的单调递减函数,若f(m+1)<f(3m-1),则实数m的取值范围是(  )
A.(0,1)B.($\frac{2}{3}$,1)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于x不等式(x2-x)(ex-1)>0的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{2}{x}$-ln(x-2)的零点所在的大致区间为(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A,B是椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右顶点,P是异于A,B的椭圆上一点,.
( 1 )求P到定点Q(0,1)的最大值;
(2)设PA,PB的斜率为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线L:(2m+1)x+(m+1)y-7m-4=0圆C:(x-1)2+(y-2)2=25交于A,B两点,则弦长|AB|的最小值为(  )
A.$8\sqrt{5}$B.$4\sqrt{5}$C.$2\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax在x=0与x=1处的切线互相垂直.
(1)若函数g(x)=f(x)+$\frac{b}{2}$lnx-bx在(0,+∞)上单调递增,求a,b的值;
(2)设函数h(x)=$\left\{\begin{array}{l}lnx,x>0\\ f(x+1),x≤0\end{array}$,若方程h(x)-kx=0有四个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}的前n项和为Sn,若a2=3,S5=25,则a8=(  )
A.13B.14C.15D.16

查看答案和解析>>

同步练习册答案