精英家教网 > 高中数学 > 题目详情

已知, 且,求证:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)
已知函数
(1)若对一切实数恒成立,求实数的取值范围.
(2)求在区间上的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
一种放射性元素,最初的质量为500g,按每年10﹪衰减.
(Ⅰ)求t年后,这种放射性元素质量ω的表达式;
(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,当时,
(1)用分段函数形式写出上的解析式;   
(2)画出函数的大致图象;并根据图像写出的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)计算(1);
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为,试求
(2)问:小张选择哪家比较合算?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数,
(1)若,且的取值范围
(2)当时,恒成立,且的取值范围

查看答案和解析>>

同步练习册答案