精英家教网 > 高中数学 > 题目详情
6.一个棱长为2cm的正方体的顶点都在球面上,则该球的表面积是12πcm2

分析 设出正方体的棱长,求出正方体的体对角线的长,就是球的直径,求出球的表面积即可.

解答 解:正方体的棱长为:2cm,正方体的体对角线的长为:2$\sqrt{3}$cm,就是球的直径,
∴球的表面积为:S2=4π($\sqrt{3}$)2=12πcm2
故答案为:12πcm2

点评 本题考查球的体积和表面积,正方体的外接球的知识,仔细分析,找出二者之间的关系:正方体的对角线就是球的直径,是解题关键,本题考查转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x4-x2有(  )
A.极小值-$\frac{1}{4}$,极大值0B.极小值0,极大值-$\frac{1}{4}$
C.极小值$\frac{1}{4}$,极大值0D.极小值0,极大值$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tan(x+$\frac{π}{4}$)=2,则$\frac{tanx}{tan2x}$的值为(  )
A.$\frac{4}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知A={1,2,3},B={x∈N||x|=3},那么A∩B=(  )
A.3B.-3C.{-3,1,2,3}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{1-x}$+log3x的定义域为(  )
A.(-∞,1]B.(0,1]C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x2-b|x|+c,g(x)=kx+c-2(k>0),函数h(x)=f(x)-g(x),若f(-4)=f(0),f(-2)=-2,则当函数h(x)的零点个数为2时,k的取值范围为(  )
A.$(2\sqrt{2},+∞)$B.$(4-2\sqrt{2},+∞)$C.(4,+∞)D.$(4+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用数学归纳法证明:12+22+32+…+n2+…+22+12=$\frac{n(2{n}^{2}+1)}{3}$,第二步证明由n=k到n=k+1时,左边应加(  )
A.k2B.(k+1)2C.k2+(k+1)2+k2D.(k+1)2+k2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=lnx+tanα(0<α<$\frac{π}{2}$)的导函数为f'(x),若方程f'(x)=f(x)的根x0小于1,则α的取值范围为(  )
A.$(\frac{π}{4},\frac{π}{2})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{4})$D.$(0,\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax,x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若不等式f(x)+1≥0在x∈R上恒成立,则实数a的取值范围为(  )
A.(-∞,0]B.[-2,2]C.(-∞,2]D.[0,2]

查看答案和解析>>

同步练习册答案