精英家教网 > 高中数学 > 题目详情
1.水平放置的△ABC,若其BC边与x轴平行,BC=a,其直观图△A′B′C′是以B′C′为斜边的等腰直角三角形,则△ABC的面积为$\frac{\sqrt{2}}{2}$a2

分析 由题意,△ABC是直角三角形,AB⊥BC,BC=a,AB=$\sqrt{2}$a,即可求出△ABC的面积.

解答 解:由题意,△ABC是直角三角形,AB⊥BC,BC=a,AB=$\sqrt{2}$a,
∴△ABC的面积为$\frac{1}{2}•a•\sqrt{2}a$=$\frac{\sqrt{2}}{2}$a2
故答案为:$\frac{\sqrt{2}}{2}$a2

点评 本题考查了平面图形直观图的画法,解答的关键是熟记斜二测画法的要点和步骤,从而还原得到原图形,求出面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,三棱锥A-BCD中,对棱AB与CD所成角为60°,且AB=CD=α,该三棱锥被一平面所截,截面为平行四边形EFGH.
(1)求证:CD∥平面EFGH;
(2)E在AD的何处时,截面面积最大?并求面积的最大值;
(3)求证:四边形EFGH的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={x^{-2{m^2}+m+3}}$(m∈Z)的图象关于y轴对称,且f(3)<f(5).求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:“方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{2-m}$=m+2表示的曲线是椭圆”,命题q:“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{m-3}$=2m+1表示的曲线是双曲线”.且p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=lo${g}_{\frac{1}{2}}$(x2-ax)在区间[2,4]上是减函数,则实数a的取值范围是(  )
A.2<a≤4B.a≤4C.a<2D.a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算:3x(x2-x-1)-(x+1)(3x2-x),其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:“?x0∈R,sinx0<m”,命题q:.?x∈R,x2+mx+1>0恒成立.若p∧q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设二次函数f(x)=ax2+bx+1(a,b∈R,a>0),方程f(x)=x的两个实数根为x1,x2,若0<x1<2,|x2-x1|=2,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=$\frac{{x}^{4}+4{x}^{3}+17{x}^{2}+26x+106}{{x}^{2}+2x+7}$的最大值与最小值,其中|x|≤1.

查看答案和解析>>

同步练习册答案