精英家教网 > 高中数学 > 题目详情

在数列中,,设
(1)证明:数列是等比数列;
(2)求数列的前项和
(3)若为数列的前项和,求不超过的最大的整数.

(1)见解析;(2);(3)不超过的最大的整数是

解析试题分析:(1)注意从出发,得到    2分
,肯定数列是公比为的等比数列.
(2)利用“错位相减法”求和.
(3)由(1)得,从而可得到
 ,利用“裂项相消法”求.
利用 
得出结论.
试题解析:(1)由两边加得,    2分
所以 , 即 ,数列是公比为的等比数列  3分
其首项为,所以                      4分
(2)                                         5分
                     ①
                 ②
①-②得
所以                                          8分
(3)由(1)得,所以
              10分
 
所以不超过的最大的整数是.                        12分
考点:等比数列的定义、通项公式及求和公式,“错位相减法”,“裂项相消法”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的,都有.
(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;
(2)若 ,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,3Sn=an-1(n∈N?).
(1)求a1,a2
(2)求证:数列{an}是等比数列;
(3)求an和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
 
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}的前n项和记为Sna1t,点(Snan+1)在直线y=2x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log3an+1Tn是数列的前n项和, 求T2 013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和是,且.求数列的通项公式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,若S1=1,S2=2,且Sn+1-3Sn+2Sn-1=0(n∈N*且n≥2),求该数列的通项公式.

查看答案和解析>>

同步练习册答案