精英家教网 > 高中数学 > 题目详情
如图,C,B,D,E四点共圆,ED与CB的延长线交于点A.若AB=4,BC=2,AD=3,则DE=   
【答案】分析:由割线定理可得:AD•AE=AB•AC,把已知数据代入计算即可.
解答:解:由割线定理可得:AD•AE=AB•AC,
∵AB=4,BC=2,AD=3,
∴3×(3+DE)=4×(4+2),
解得DE=5.
故答案为5.
点评:熟练掌握割线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-1几何证明选讲)
如图,D,E分别是AB,AC边上的点,且不与顶点重合,已知AE=m,AC=n,AD,AB为方程x2-14x+mn=0的两根
(1)证明:C,B,D,E四点共圆;
(2)若∠A=90°,m=4,n=6,求C,B,D,E四点所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•红桥区二模)如图,C,B,D,E四点共圆,ED与CB的延长线交于点A.若AB=4,BC=2,AD=3,则DE=
5
5

查看答案和解析>>

同步练习册答案