精英家教网 > 高中数学 > 题目详情
(2013•绵阳二模)已知函数f(x)=
13
x3-2x2+3x(x∈R)的图象为曲线C.
(1)求曲线C上任意一点处的切线的斜率的取值范围;
(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;
(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.
分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C上任意一点处的切线的斜率的取值范围;
(2)根据(1)可知k与-
1
k
的取值范围,从而可求出k的取值范围,然后解不等式可求出曲线C的切点的横坐标取值范围;
(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,分别求出切线,由于两切线是同一直线,建立等式关系,根据方程的解的情况可得是符合条件的所有直线方程.
解答:解:(1)f'(x)=x2-4x+3,则f′(x)=(x-2)2-1≥-1,
即曲线C上任意一点处的切线的斜率的取值范围是[-1,+∞);------------(4分)
(2)由(1)可知,
k≥-1
-
1
k
≥-1
---------------------------------------------------------(6分)
解得-1≤k<0或k≥1,由-1≤x2-4x+3<0或x2-4x+3≥1
得:x∈(-∞,2-
2
]∪(1,3)∪[2+
2
,+∞);-------------------------------(9分)
(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2
则切线方程是:y-(
1
3
x
3
1
-2
x
2
1
+3x1)=(
x
2
1
-4x1+3)(x-x1),
化简得:y=(
x
2
1
-4x1+3)x+(-
2
3
x
3
1
+2
x
2
1
),--------------------------(11分)
而过B(x2,y2)的切线方程是y=(
x
2
2
-4x1+3)x+(-
2
3
x
3
2
+2
x
2
2
),--------------------------(,
由于两切线是同一直线,
则有:
x
2
1
-4x1+3=
x
2
2
-4x1+3,得x1+x2=4,----------------------(13分)
又由-
2
3
x
3
1
+2
x
2
1
=-
2
3
x
3
2
+2
x
2
2

即-
2
3
(x1-x2)(
x
2
1
+x1x2+
x
2
2
)+(x1-x2)(x1+x2)=0
-
1
3
x
2
1
+x1x2+
x
2
2
)+4=0,即x1(x1+x2)+
x
2
2
-12=0
即(4-x2)×4+
x
2
2
-12=0,
x
2
2
-4x2+4=0
得x2=2,但当x2=2时,由x1+x2=4得x1=2,这与x1≠x2矛盾.
所以不存在一条直线与曲线C同时切于两点.----------------------------------(16分)
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及互相垂直的直线的斜率关系,同时考查了运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•绵阳二模)我们把离心率之差的绝对值小于
1
2
的两条双曲线称为“相近双曲线”.已知双曲线
x2
4
-
y2
12
=1
与双曲线
x2
m
-
y2
n
=1
是“相近双曲线”,则
n
m
的取值范围是
[
4
21
4
5
]∪[
5
4
21
4
]
[
4
21
4
5
]∪[
5
4
21
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)已知△ABC的面积S满足3≤S≤3
3
,且
AB
BC
=6
AB
BC
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•绵阳二模)若loga(a2+1)<loga2a<0,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案