精英家教网 > 高中数学 > 题目详情

【题目】在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(
A.20种
B.22种
C.24种
D.36种

【答案】C
【解析】解:根据题意,分2种情况讨论:
①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,
共有 =12种推荐方法;
②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,
共有 =12种推荐方法;
故共有12+12=24种推荐方法;
故选:C.
根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的大学中选;分别求出每种情况下的推荐方法数目,由加法原理将其数目相加即可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,﹣1), =(
(1)若m=﹣ ,求 的夹角θ;
(2)设 . ①求实数m的值;
②若存在非零实数k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N(异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.
(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;
(2)当θ为何值时,l(θ)有最大值?并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知t为实数,函数f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)﹣kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n﹣m的最小值为 ,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F(0,1),点P在x轴上,点Q在y轴上, =2 ,当点P在x轴上运动时,点N的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l交曲线C于A,B两点,且曲线C在A,B两点处的切线相交于点M,若△MAB的三边成等差数列,求此时点M到直线AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:点M(1,3)不在圆(x+m)2+(y﹣m)2=16的内部,命题q:“曲线 表示焦点在x轴上的椭圆”,命题s:“曲线 表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的长方体中,AB=2 ,AD= = ,E、F分别为 的中点,则异面直线DE、BF所成角的大小为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)定义在区间(﹣1,1)内,对于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.

查看答案和解析>>

同步练习册答案