精英家教网 > 高中数学 > 题目详情
15.如图,已知A(4,0)、B(0,4),从点P(2,0),点M是线段AB上一点,点N是y轴上一点,则|PM|+|PN|+|MN|的最小值是   (  )
A.2$\sqrt{10}$B.6C.3$\sqrt{3}$D.2$\sqrt{5}$

分析 点P关于y轴的对称点P′坐标是(-2,0),设点P关于直线AB:x+y-4=0的对称点P″(a,b),|PM|+|PN|+|MN|的最小值等于|P′P″|即可求解.

解答 解:点P关于y轴的对称点P′坐标是(-2,0),设点P关于直线AB:x+y-4=0的对称点P″(a,b),
由$\left\{\begin{array}{l}{\frac{b-0}{a-2}×(-1)=-1}\\{\frac{a+2}{2}+\frac{b+0}{2}-4=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=4}\\{b=2}\end{array}\right.$,
则P″(4,2).
那么|PM|+|PN|+|MN|的最小值等于|P′P″|=$\sqrt{(4+2)^{2}+(0-2)^{2}}=2\sqrt{10}$.
故选:A.

点评 本题考查了点关于直线对称的问题,两点之间的距离直线最短,利用对称性把所有点在一条直线上.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M={1,2,3},N={2,3,4},则下列式子正确的是(  )
A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集I=R,集合A={y|y=x2-2},B={x|y=log2(3-x)},则A∩B等于(  )
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<3}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于集合A,B,C,A={x|x2-5x+a≥0},B={x|m≤x≤m+7},若对于?a∈C,?m∈R,使得A∪B=R.求集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列1,$\frac{2}{3}$,$\frac{3}{5}$,$\frac{4}{7}$,$\frac{5}{9}$,…的一个通项公式可能是(  )
A.$\frac{n}{2n+1}$B.$\frac{n}{2n-1}$C.$\frac{n}{2n-3}$D.$\frac{n}{2n+3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,则(  )
A.若α∥β,则l∥mB.若l∥m,则α∥βC.若α⊥β,则l⊥mD.若l⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=λ+(n-1)•2n,又数列{bn}满足:an•bn=n.
(1)求数列{an}的通项公式;
(2)当λ为何值时,数列{bn}是等比数列?并求此时数列{bn}的前n项和Tn取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=$\frac{1}{4}$.
(1)求b的值;
(2)求sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α终边上一点P(-12,5),则cosα=-$\frac{12}{13}$.

查看答案和解析>>

同步练习册答案