| A. | 2$\sqrt{10}$ | B. | 6 | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
分析 点P关于y轴的对称点P′坐标是(-2,0),设点P关于直线AB:x+y-4=0的对称点P″(a,b),|PM|+|PN|+|MN|的最小值等于|P′P″|即可求解.
解答 解:点P关于y轴的对称点P′坐标是(-2,0),设点P关于直线AB:x+y-4=0的对称点P″(a,b),
由$\left\{\begin{array}{l}{\frac{b-0}{a-2}×(-1)=-1}\\{\frac{a+2}{2}+\frac{b+0}{2}-4=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=4}\\{b=2}\end{array}\right.$,
则P″(4,2).
那么|PM|+|PN|+|MN|的最小值等于|P′P″|=$\sqrt{(4+2)^{2}+(0-2)^{2}}=2\sqrt{10}$.
故选:A.
点评 本题考查了点关于直线对称的问题,两点之间的距离直线最短,利用对称性把所有点在一条直线上.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<3} | B. | {x|x≤-2} | C. | {x|x<3} | D. | {x|x<-2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{2n+1}$ | B. | $\frac{n}{2n-1}$ | C. | $\frac{n}{2n-3}$ | D. | $\frac{n}{2n+3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,则l∥m | B. | 若l∥m,则α∥β | C. | 若α⊥β,则l⊥m | D. | 若l⊥β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com