精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=$\frac{1}{4}$.
(1)求b的值;
(2)求sin2C的值.

分析 (1)由已知利用余弦定理即可解得得解b的值.
(2)利用余弦定理可求cosC的值,结合同角三角函数基本关系式可求sinC的值,进而利用二倍角公式即可计算得解.

解答 解:(1)由余弦定理,b2=a2+c2-2accosB,可得:${b^2}={2^2}+{3^2}-2×2×3×\frac{1}{4}=10$,
∴解得:$b=\sqrt{10}$.
(2)∵$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$=$\frac{4+10-9}{{2×2×\sqrt{10}}}=\frac{{\sqrt{10}}}{8}$,
又∵C是△ABC的内角,
∴$sinC=\frac{{3\sqrt{6}}}{8}$.
∴sin2C=2sinCcosC=2×$\frac{3\sqrt{6}}{8}$×$\frac{\sqrt{10}}{8}$=$\frac{3\sqrt{15}}{16}$.

点评 本题主要考查了余弦定理,同角三角函数基本关系式,二倍角公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=ax2+bx+b-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,已知A(4,0)、B(0,4),从点P(2,0),点M是线段AB上一点,点N是y轴上一点,则|PM|+|PN|+|MN|的最小值是   (  )
A.2$\sqrt{10}$B.6C.3$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线(k+1)x-(2k-1)y+3k=0恒过定点(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(2x-1)=3x2+1,则f(x)的表达式为$f(x)=\frac{3}{4}{x^2}+\frac{3}{2}x+\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn=n2(n≥2)并且a1=1.
(1)求a2,a3
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{2x}{2x-1}$(x≠1),数列{an}的通项公式为an=f(${\frac{n}{2018}}$)(n∈N*),则此数列前2018项的和为2020.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,Sn=n2+n.
(Ⅰ)求{an}的通项公式an
(Ⅱ)若ak+1,a2k,a2k+3(k∈N*)恰好依次为等比数列{bn}的第一、第二、第三项,求数列{$\frac{n}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上.求证:直线DE∥平面A1C1F.

查看答案和解析>>

同步练习册答案