精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{2x}{2x-1}$(x≠1),数列{an}的通项公式为an=f(${\frac{n}{2018}}$)(n∈N*),则此数列前2018项的和为2020.

分析 找出通项公式为an的关系式,“倒序相加法”求解即可.

解答 解:函数f(x)=$\frac{2x}{2x-1}$(x≠1),an=f(${\frac{n}{2018}}$)(n∈N*),
∴an=f(${\frac{n}{2018}}$)=$\frac{\frac{2n}{2018}}{\frac{2n}{2018}-1}$=$\frac{n}{n-1009}$=1+$\frac{1009}{n-1009}$(n≠1009),
则此数列前2018项的和Sn=1+$\frac{1009}{1-1009}$+1+$\frac{1009}{2-1009}$+…+$1+\frac{1009}{2017-1009}$+1$+\frac{1009}{2018-1009}$,
不难发现:a1+a2017=2,a2+a2016=2,除去a1009项,a2018=1+$\frac{1009}{2018-1009}$=2,
故得此数列前2018项的和为:2020.
故答案为:2020.

点评 本题考查了“倒序相加法”求数列的和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设全集I=R,集合A={y|y=x2-2},B={x|y=log2(3-x)},则A∩B等于(  )
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<3}D.{x|x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=λ+(n-1)•2n,又数列{bn}满足:an•bn=n.
(1)求数列{an}的通项公式;
(2)当λ为何值时,数列{bn}是等比数列?并求此时数列{bn}的前n项和Tn取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,cosB=$\frac{1}{4}$.
(1)求b的值;
(2)求sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=x2+2(x∈R)的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用随机模拟法求函数y=$\sqrt{x}$的图象与x轴和直线x=1围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)是定义在R上的偶函数,下列说法:
①f(0)=0;
②若f(x)在[0,+∞)上有最小值-1,则f(x)在(-∞,0]上有最大值1;
③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α终边上一点P(-12,5),则cosα=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式$\frac{2x-1}{x+3}$>0的解集是(  )
A.($\frac{1}{2}$,+∞)B.(4,+∞)C.(-∞,-3)∪(4,+∞)D.(-∞,-3)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案